
1
NASA Lewis Research Center

SOFTWARE RELIABILITY
& QUALITY

(14)

go to 100 939393939399944
for i = 1 to 10 for i = 1 to 20
for j = 1 to 20
print i, j
system
go sub 1432
re 20
let x= x + 1
for t = 0 to 100; go sub 25; go sub 23

 SOFTWARE

2
NASA Lewis Research Center

SOFTWARE RELIABILITY

• The probability that software will not cause
the failure of a system or that software will
not cause unanticipated conditions that could
result in loss of system or subsystems.

3
NASA Lewis Research Center

WHY IMPORTANT?

• Tremendous growth in use of software (SW) to
control systems.

• Software used to control critical life support and
safety systems as well as entire unit (aircraft, nuclear
power plant etc).

• Mechanical interlocks being replaced with SW
• Lack of discipline in generating SW now exists.
• Many critical accidents as a result of SW problems.
• Growth to continue.

4
NASA Lewis Research Center

WHY IMPORTANT?

• General B. Randolph (June, 1989 AW&ST):
– “... demand for software is growing at 25%

per year.”
– “...cost and schedule growth are due to a

failure of systems engineering and the
requirements process...”

• Critical to weight savings in systems.
• Critical to elimination of personnel who could

be used better elsewhere!

5
NASA Lewis Research Center

SOFTWARE RELIABILITY
OBJECTIVES

• WHAT ARE SOME SW RELIABILITY MODELS?
• WHAT TYPES OF PROBLEMS ARE THERE IN TRYING

TO PREDICT SW RELIABILITY?
• WHAT “TYPES” OF SW EXIST (WHEN EVALUATING SW

RELIABILITY AND SAFETY) AND WHAT ARE THE
CRITERIA FOR EVALUATING THEM?

• WHAT TYPES OF ENVIRONMENTS DOES SW OPERATE
IN?

• WHAT ARE SOME OF THE TYPES OF HARDWARE AND
SW FAILURES?

6
NASA Lewis Research Center

SOFTWARE RELIABILITY
OBJECTIVES (con’t)

• WHAT ARE SOME COMPUTER SYSTEM ERRORS THAT
CAN OCCUR?

• WHAT ARE THE RISKS TO THE SYSTEM FROM SW?
• WHY DO ACCIDENTS INVOLVING SW HAPPEN--BOTH

FROM THE SYSTEMS ENGINEER AND SW ENGINEERS
VIEWPOINT?

• WHAT ARE SOME SW RELIABILITY or (SAFETY)
AXIOMS THAT ARE NECESSARY TO PROPERLY
UNDERSTAND SW?

7
NASA Lewis Research Center

SOFTWARE QUALITY
OBJECTIVES

• WHY DO ACCIDENTS FROM SW HAPPEN?
• WHAT ARE SOME SW QUALITY METRICS?
• WHAT TOOLS EXIST TO IMPROVE SW QUALITY?
• WHAT SHOULD SPECIFICATIONS FOR SW CONTAIN?
• HOW IS THE QUALITY AND RELIABILITY OF SW

ASSESSED?

8
NASA Lewis Research Center

 SOFTWARE QUALITY
OBJECTIVES (con’t)

• WHAT WOULD YOU SPECIFY TO IMPROVE SW SAFETY?
• WHAT ARE THE TOOLS THAT AFFECT SW RELIABILITY

AND HOW DO THEY AFFECT SW QUALITY?
• WHAT ARE FACTORS THAT AFFECT TRADEOFFS AND

COSTING WHEN SW QUALITY IS EVALUATED?

9
NASA Lewis Research Center

OUTLINE - SW RELIABILITY
RELIABILITY
• Overview of the problem with SW.
• SW Reliability models.
• Types of SW.
• Sources of error.
• Tools to improve SW reliability & safety.
• SW safety axioms.

10
NASA Lewis Research Center

OVERVIEW: WHERE DO
FAILURES COME FROM?

DESIGN MANUFACTURE OPERATION

SOFTWARE

11
NASA Lewis Research Center

COMPUTER
ARCHITECTURE

Problem Sources

DESIGN
LOGIC

go to 100 939393939399944
for i = 1 to 10 for i = 1 to 20
for j = 1 to 20
print i, j
system
go sub 1432
re 20
let x= x + 1
for t = 0 to 100; go sub 25; go sub 23

 SOFTWARE

 SENSOR
DATA

 USER
INPUT

HARDWARE

 DATA, LOOK-
 UP TABLES

 CONTROL
INTERFACE,

SHIELDING
FIRMWARE

 CONTROL
SIGNALS

12
NASA Lewis Research Center

OVERVIEW: HARDWARE /SOFTWARE
RELIABILITY DICHOTOMY

• There is a vast difference recognized between
methods used for software, as opposed to
hardware, to predict, inspect, test, assure,
implement, and verify their reliability.

• This is due to the nonphysical abstract nature
of software, the failures of which are always
information design oversights or
programming mistakes and are not based on
environmental stresses or cumulative
damage.

• As a discipline, software reliability uses few
of the methods that apply to hardware
reliability.

13
NASA Lewis Research Center

OVERVIEW: TRADITIONAL SOFTWARE
ENGINEERING PROBLEMS

• LACK OF DISCIPLINE AND REPEATABILITY
• LACK OF DEVELOPMENT VISIBILITY
• CHANGING PERFORMANCE REQUIREMENTS
• LACK OF DESIGN AND VERIFICATION TOOLS
• LACK OF SOFTWARE REUSABILITY
• LACK OF COMMUNICATION

ENGINEERPROGRAMMER

14
NASA Lewis Research Center

SW RELIABILITY MODELS
• Mathematical models which attempt to predict bug

removal rate or number of bugs remaining based on
testing or running time or bug count, etc.

• ASSUMPTIONS:
– Perfect debugging.
– All faults contribute to error rate.
– Test Environment = Operating Environment.
– Operating environment is static.
– Errors are random and independent of past

system behavior.
– Availability of system improves as design errors

are removed.
– All tests can be conceived and anticipated.

15
NASA Lewis Research Center

SW RELIABILITY MODELS (Con’t)

Model categories are:
• Time domain: Software reliability is related to

number of bugs at a given time during
development.

• Data domain: Program reliability is estimated by
running the program for a subset of input data.

• Axiomatic: It is postulated that reliability obeys
certain universal laws.

• Other: Errors result from input data sets and
logical paths etc.

P 14.2 (opt)

16
NASA Lewis Research Center

Conclusions on Software Models

• Predicting reliability of SW and reliability modeling
except for specialized highly structured cases is not
an easy task.

• A quantifiable reliability approach is needed.
– Clearly define software reliability and quality

assurance functions.
– Focus on complete elimination of critical defects

and a specified tolerance level for minor defects.
– Monitor and control defect removal and field

performance.

17
NASA Lewis Research Center

TOOLS TO IMPROVE SOFTWARE
SYSTEM RELIABILITY & SAFETY

ORGANIZATIONAL
• Communication/ Documentation/ Standardization/

Personnel/ Silver Bullets/ Configuration Management/
Software Reuse

• DESIGN & REQUIREMENTS
• Requirements/ Adding Features/ Anticipating Problems

/Software-Hardware Interaction/ Isolating Processes
• OTHER PROBLEM AREAS
• Reliability/System/Sensor Interfaces/ RF Noise/

Maintenance and Manufacture

ENGINEERPROGRAMMER

18
NASA Lewis Research Center

SOFTWARE ANALYSIS TOOLS
• Fault Tree Analysis (FTA).
• Petri Net Analysis.
• Hazards analysis.
• Formal logic analyzers.
• Software Failure Mode and Effect Analysis.

19
NASA Lewis Research Center

TYPES OF SOFTWARE
Based on Timing & Control:

• The allowability of REAL-TIME HUMAN ASSESSMENT
and INTERFERENCE.

• Is the software AUTONOMOUS or INFORMATIONAL.
• Is the software TIME-CRITICAL or NON TIME-CRITICAL.
• For informational software is the info CRITICAL or NON

-CRITICAL.

20
NASA Lewis Research Center

TYPES OF SOFTWARE
Based on Timing & Control (con’t)

AUTONOMOUS, REAL-TIME CONTROL SW
• Real-time human evaluation of the program output or

control activity is often not desirable. Real-time human
interference is not desirable.

AUTONOMOUS SOFTWARE
• Real-time human evaluation and response is possible

and immediate corrective action may be necessary.
INFORMATIONAL/ TIME CRITICAL SOFTWARE
• Real-time human actions and responses use the

information to take immediate corrective action or to
initiate other procedures.

21
NASA Lewis Research Center

TYPES OF SOFTWARE
Based on Timing & Control (con’t)

OPERATOR CONTROL SOFTWARE
• Real-time human action is required for the program

to control a system, initiate hazardous functions, or
safety or protective activity, etc.

INFORMATION SOFTWARE
• Human action and decisions are directly influenced

by the information or the information is needed for
safe operation of the system.

22
NASA Lewis Research Center

TYPES OF SOFTWARE
Based on Environments

• Interactive
• Batch
• Remote job entry

23
NASA Lewis Research Center

TYPES OF SOFTWARE
Based on Categories

• Product software
• Embedded software
• Applications software
• Support software

24
NASA Lewis Research Center

SOURCES OF ERRORS

• REQUIREMENTS/SPECIFICATIONS
– Definitions / interpretations

• DESIGN
– Hardware / software

• CODING
– Source file entry / compilation

• INTEGRATION
– Assembly / linking / file transfer

• MANUFACTURE
– Duplication / loading / configuration

25
NASA Lewis Research Center

SOURCES OF ERROR:
“SOFTWARE ENGINEERING”

• LACK OF DISCIPLINE AND REPEATABILITY
• LACK OF DEVELOPMENT VISIBILITY
• CHANGING PERFORMANCE REQUIREMENTS
• LACK OF DESIGN AND VERIFICATION

TOOLS
• LACK OF SOFTWARE REUSABILITY

26
NASA Lewis Research Center

EXAMPLES OF COMPUTER
SYSTEM ERRORS

• RADIATION MONITOR
– TIming problem with data entry.
– Hardware interlocks removed.

• CHEMICAL PLANT
– Programmers did not understand process.

• SPACE SHUTTLE
– Software revisions were not rechecked.

• AIRLINER
– Personal computer shuts down navigation

system.

E

27
NASA Lewis Research Center

WHY DO ACCIDENTS HAPPEN?:
SOFTWARE ENGINEER

DEPENDENT
• POOR AND INADEQUATE PRACTICE.
• NOT USING STATE OF THE ART

TECHNIQUES.
• UNQUALIFIED PERSONNEL.
• DEPENDENCE UPON SILVER BULLETS.
• CHANGING REQUIREMENTS.
• SW ENGINEERS MAY NOT UNDERSTAND

SYSTEM SAFETY.
• SYSTEMS MAY NOT BE MADE FAIL-SAFE OR

HARDENED FROM EMI.

28
NASA Lewis Research Center

WHY DO ACCIDENTS HAPPEN?:
SYSTEM SAFETY ENGINEER

DEPENDENT
• IGNORED SOFTWARE IN THEIR ANALYSIS

OR LOOKED AT IT SUPERFICIALLY.
• EMPHASIZE DEPENDENCE ON NUMBERS.
• LITTLE INTERACTION WITH SW

ENGINEERING PERSONNEL.
• OVEREMPHASIS ON FORM RATHER THAN

CONTENT.
• OVERCONFIDENCE IN SOFTWARE.

29
NASA Lewis Research Center

TOOLS TO IMPROVE SOFTWARE
SYSTEM RELIABILITY & SAFETY

• SOFTWARE MODULES/SOFTWARE REUSE.
• DISTRIBUTED REAL-TIME SYSTEMS.
• MULTIPLE VOTING SYSTEMS.
• MIX OF PROGRAMMING SKILLS & EXPERIENCE.
• ANALOG INTERLOCKS.
• ANALOG BACKUPS.
• SOFTWARE FAULT DETECTION.
• SOFTWARE ANALYSIS TOOLS.
• SOFTWARE DEVELOPMENT SPECIFICATIONS.

30
NASA Lewis Research Center

TOOLS: SOFTWARE
MODULES/SOFTWARE REUSE

• Reuse software
• Do not reinvent the wheel
• Keep senior programmers or senior

managers who can review software.
• Modularized with well documented inputs and

outputs..

31
NASA Lewis Research Center

TOOLS: DISTRIBUTED REAL
TIME SYSTEMS

• Multiple computers handle data analysis and
I/O control capabilities.

• Developed as a fault tolerant system.
– Error detection and correction.
– Recovery procedures
– Load balancing
– Dynamic traffic time sharing

32
NASA Lewis Research Center

TOOLS: MULTIPLE VOTING
SYSTEMS

• Multiple systems are more reliable.
• Systems can sense when there are anomalies

and can then alert operator.
• Systems need to have separate power and

location (to avoid common mode failures).
• Systems for critical applications need to be

separate from whistles and bells system for
everything else.

• Keep SW to a minimum for critical control
systems.

33
NASA Lewis Research Center

TOOLS: MIX OF PROGRAMMING
SKILLS & EXPERIENCE

• Do not rely on all new programmers.
• Reuse software code when possible.
• Have software verification specialists.

34
NASA Lewis Research Center

TOOLS: ANALOG INTERLOCKS

• Do not replace mechanical or electro-
mechanical interlocks with software
interlocks (if at all possible).

• Keep analog backup systems for critical
components.

• In querying alarms, assume there is a
problem, set the alarms and then remove
them one by one.

35
NASA Lewis Research Center

TOOLS: ANALOG BACKUPS
FOR CRITICAL SYSTEMS

• In special applications (e.g. a chemical
process plant) allow actuators to go to a safe
position if computer control is lost.

• Monitor the health of the backups and the
output of software control commands
independently of the main control computer.

36
NASA Lewis Research Center

TOOLS: SOLUTIONS --FAULT
DETECTION

• PREVENTION OF HAZARDS THROUGH
DESIGN.

– Passive controls, designed to fail into safe
state.

– Reduce functionality if necessary.
• DETECTION AND TREATMENT AT RUN TIME.

– Active Controls.
– Designs which are conservative and

assume errors to exist.

P 14.1 (opt)

37
NASA Lewis Research Center

SOFTWARE ANALYSIS TOOLS
• Fault Tree Analysis (FTA).
• Petri Net Analysis.
• Software analysis programs.
• Other analysis tools.

p1

p2

p3

t1

p4 t2

p5

p6

FTA
Petri Net

38
NASA Lewis Research Center

TOOLS: SOFTWARE
DEVELOPMENT SPECIFICATIONS

• WRITE A SOFTWARE SAFETY PROGRAM PLAN.
• WRITE A SOFTWARE SAFETY HANDBOOK AND

RELIABILITY PRACTICES SPECIFICATIONS.
• DEVELOP A FORMAL PLAN FOR MAINTENANCE

AND OPERATION.
• HAVE FORMAL SOFTWARE SYSTEM SAFETY

WORKING GROUPS.
• INTEGRATE SYSTEM AND SW SAFETY, QUALITY

AND RELIABILITY.

39
NASA Lewis Research Center

SOFTWARE SAFETY AXIOMS
• TREAT SOFTWARE AS A SINGLE POINT FAILURE!

(often in an analysis the software is just ignored).
• MANY ACCIDENTS ARE DUE TO INADEQUATE

DESIGN FORESIGHT AND REQUIREMENTS
SPECIFICATIONS:

– Almost no accidents due to coding errors.
– Incomplete or wrong assumptions about

operation of controlled systems or requirements
of operation of the computer.

– Unhandled controlled system states and
environmental conditions.

40
NASA Lewis Research Center

MORE AXIOMS

• DECIDE WHAT YOU DON’T WANT TO
HAPPEN -- MAKE SURE YOUR PROGRAM
CAN’T GET THERE.

• MAKE YOUR SYSTEM FAULT TOLERANT.
• MAKE SURE YOUR SYSTEM CAN RECOVER

FROM FAULTS.
• MAKE SURE YOUR SYSTEM CAN RECOVER

FROM FAULTS.
• DO NOT KEEP CHANGING THE SYSTEM

SPECIFICATIONS.

41
NASA Lewis Research Center

MORE AXIOMS
• IT IS IMPOSSIBLE TO BUILD A COMPLEX SW

SYSTEM TO BEHAVE EXACTLY AS IT
SHOULD UNDER ALL CONDITIONS!

• SOFTWARE SAFETY, QUALITY & RELIABILITY
ARE DESIGNED IN, NOT TESTED IN.

• COMPLACENCY MAY BE THE MOST
IMPORTANT ROOT CAUSE OF ACCIDENTS.

• UPSTREAM APPROACHES TO SOFTWARE
SAFETY ARE MOST EFFECTIVE.

• SW ALONE IS NEITHER SAFE OR UNSAFE.
• MANY SW BUGS ARE TIMING PROBLEMS

WHICH ARE DIFFICULT TO TEST FOR.

42
NASA Lewis Research Center

MORE SUGGESTIONS & AXIOMS:
• Keep safety critical systems as small as

possible and simple as possible by moving
any functions that are not safety critical to
other computers.

• As a rule software systems do not work well
until they have been used.

• Software is the weak link.
• Mathematical functions implemented by SW

are not continuous functions but have an
arbitrary number of discontinuities.

• In many organizations there is lack of up-to-
date professional standards in software
engineering (and/or lack of use).

43
NASA Lewis Research Center

MORE SUGGESTIONS & AXIOMS

• Engineers believe one can design black box
tests without knowledge of what is inside the
box.

• Use independent IV&V
• Use IBM clean room approach to develop SW.
• Software often fails because the SW goes

somewhere that the programmer does not
think it can get to!

44
NASA Lewis Research Center

CONCLUSION: Not a Black Box

ELECTRO-
MECH.
SYS.

SW & HW
CONTROL

45
NASA Lewis Research Center

CONCLUSION: Single Point -
Unstable Failure Source.

ELECTRO-
MECH.
SYS.

Buffer overload, timing issues, sneak circuits,
discontinuities in algorithms, whistles and bells,

 more whistles and bells, system overload, HW failure,
sensor failure, rf interference, unstable & undocumented

programs, multiple languages, programmers do not
understand engineering system, sabotage, memoryless
batch programs, HW errors, HW voltage level anomalies,

clever software, overly complex software, no IV&V, no
revision testing, poor bug reporting, no modularity

SW & HW
CONTROL

46
NASA Lewis Research Center

CONCLUSIONS

• Software is used in critical applications.
• Software is a weak link in the system reliability chain.
• The potential problems with software are not well

understood.
• If handled properly and applied properly the application

of software/ hardware can be a valuable design option.
• There are many ways to validate and improve software

(see also software quality). END

